Deissler Rank Complexity of Powers of Indecomposable Injective Modules
نویسندگان
چکیده
Minimality ranks in the style of Deissler are one way of measuring the structural complexity of minimal extensions of first-order structures. In particular, positive Deissler rank measures the complexity of the injective envelope of a module as an extension of that module. In this paper we solve a problem of the second author by showing that certain injective envelopes have the maximum possible positive Deissler rank complexity. The proof shows that this complexity naturally reflects the internal structure of the injective extension in the form of the levels of the Matlis hierarchy. In this paper we present a general and positive solution to a problem raised in Kucera [4]. The problem concerns the structural complexity of injective modules over a commutative Noetherian ring . An injective module is essentially one wherein every formally consistent system of linear equations has a solution. The injective envelope of a module (minimal injective extension) can be constructed by adding solutions to linear systems, in a manner analogous to the construction of the algebraic closure of a field (see, for instance, Kucera [5] for details). Thus it makes sense to analyze the structural complexity of injective envelopes in terms of patterns of solutions of linear systems. There is further support for this idea from the viewpoint of mathematical logic. A positive primitive formula (in the first-order language of -modules) is a formula φ( x) of the form ∃ y n ∧
منابع مشابه
Indecomposable injective modules of finite Malcev rank over local commutative rings
It is proven that each indecomposable injective module over a valuation domain R is polyserial if and only if each maximal immediate extension R̂ of R is of finite rank over the completion R̃ of R in the R-topology. In this case, for each indecomposable injective module E, the following invariants are finite and equal: its Malcev rank, its Fleischer rank and its dual Goldie dimension. Similar res...
متن کاملRanks of modules relative to a torsion theory
Relative to a hereditary torsion theory $tau$ we introduce a dimension for a module $M$, called {em $tau$-rank of} $M$, which coincides with the reduced rank of $M$ whenever $tau$ is the Goldie torsion theory. It is shown that the $tau$-rank of $M$ is measured by the length of certain decompositions of the $tau$-injective hull of $M$. Moreover, some relations between the $tau$-rank of $M$ and c...
متن کاملPure-injective hulls of modules over valuation rings
If R̂ is the pure-injective hull of a valuation ring R, it is proved that R̂ ⊗R M is the pure-injective hull of M , for every finitely generated Rmodule M . Moreover R̂ ⊗R M ∼= ⊕1≤k≤nR̂/AkR̂, where (Ak)1≤k≤n is the annihilator sequence of M . The pure-injective hulls of uniserial or polyserial modules are also investigated. Any two pure-composition series of a countably generated polyserial module a...
متن کاملCzechoslovak Mathematical Journal
First, we give a complete description of the indecomposable prime modules over a Dedekind domain. Second, if R is the pullback, in the sense of [9], of two local Dedekind domains then we classify indecomposable prime R-modules and establish a connection between the prime modules and the pure-injective modules (also representable modules) over such rings.
متن کاملAuslander Algebras of Self-Injective Nakayama Algebras
For the Auslander algebras E of self-injective Nakayama algebras, the Δ-filtrations of the submodules of indecomposable projective Emodules are determined, a class of Δ-filtered E-modules without selfextensions are constructed, and the Ringel dual of E is described. Mathematics Subject Classifications: 16G10
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Notre Dame Journal of Formal Logic
دوره 35 شماره
صفحات -
تاریخ انتشار 1994